На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
математика
вложенная последовательность
математика
локальная функция
математика
вещественная последовательность
общая лексика
генетическая информация
общая лексика
нуклеотидная последовательность
['nestid]
общая лексика
вложенный
вложенный один в другой
гнездный
гнездовой
расположенный гнездами
Смотрите также
прилагательное
математика
вложенный
[slæt]
общая лексика
карандашная дощечка
перекладина
авиация
предкрылок
строительное дело
перекладина, поперечина
филёнка
дощечка
Смотрите также
существительное
[slæt]
общая лексика
планка
перекладина
филёнка
внезапный порыв ветра
удар
шлепок
перекладина, планка, филенка, дощечка
авиация
предкрылок
сельское хозяйство
планка мотовила
сленг
рёбра
профессионализм
лыжа
жаргонизм
ребра
глагол
[slæt]
общая лексика
хлопать
трепыхаться (о парусе, белье на верёвке и т. п.)
бросать
швырять
бить
ударять
редкое выражение
делать (что-л.) из планок
реек
плиток
приделывать планку
рейку
плитку
диалектизм
покрывать крышу шифером
каменной плиткой
In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals on the real number line with natural numbers as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met:
In other words, the left bound of the interval can only increase (), and the right bound can only decrease ().
Historically - long before anyone defined nested intervals in a textbook - people implicitly constructed such nestings for concrete calculation purposes. For example, the ancient Babylonians discovered a method for computing square roots of numbers. In contrast, the famed Archimedes constructed sequences of polygons, that inscribed and surcumscribed a unit circle, in order to get a lower and upper bound for the circles circumference - which is the circle number Pi ().
The central question to be posed is the nature of the intersection over all the natural numbers, or, put differently, the set of numbers, that are found in every Interval (thus, for all ). In modern mathematics, nested intervals are used as a construction method for the real numbers (in order to complete the field of rational numbers).